Tailoring the Spacer Arm for Covalent Immobilization of Candida antarctica Lipase B-Thermal Stabilization by Bisepoxide-Activated Aminoalkyl Resins in Continuous-Flow Reactors.
نویسندگان
چکیده
An efficient and easy-to-perform method was developed for immobilization of CaLB on mesoporous aminoalkyl polymer supports by bisepoxide activation. Polyacrylate resins (100-300 µm; ~50 nm pores) with different aminoalkyl functional groups (ethylamine: EA and hexylamine: HA) were modified with bisepoxides differing in the length, rigidity and hydrophobicity of the units linking the two epoxy functions. After immobilization, the different CaLB preparations were evaluated using the lipase-catalyzed kinetic resolution (KR) of racemic 1-phenylethanol (rac-1) in batch mode and in a continuous-flow reactor as well. Catalytic activity, enantiomer selectivity, recyclability, and the mechanical and long-term stability of CaLB immobilized on the various supports were tested. The most active CaLB preparation (on HA-resin activated with 1,6-hexanediol diglycidyl ether-HDGE) retained 90% of its initial activity after 13 consecutive reaction cycles or after 12 month of storage at 4 °C. The specific rate (rflow), enantiomer selectivity (E) and enantiomeric excess (ee) achievable with the best immobilized CaLB preparations were studied as a function of temperature in kinetic resolution of rac-1 performed in continuous-flow packed-bed bioreactors. The optimum temperature of the most active HA-HDGE CaLB in continuous-flow mode was 60 °C. Although CaLB immobilized on the glycerol diglycidyl ether (GDGE)-activated EA-resin was less active and less selective, a much higher optimum temperature (80 °C) was observed with this form in continuous-flow mode KR of rac-1.
منابع مشابه
Over-stabilization of chemically modified and cross-linked Candida antarctica lipase B using various epoxides and diepoxides
Candida antarctica lipase B, Cal-B, was (i) chemically modified with various epoxides or (ii) cross-linked with various diepoxides in order to improve enzyme activity and thermal stability. Modification of the enzyme structure was confirmed by kinetic resolution of p-nitrophenyl acetate with methanol and determination of the kinetic parameters. Thermal stability measurements were carried out fo...
متن کاملEffect of Candida antarctica lipase B immobilization on the porous structure of the carrier.
A series of poly(GMA-co-EGDMA) resins with identical composition but varying particle sizes, pore radii, specific surface areas and specific volumes are studied to assess how Candida antarctica lipase B immobilization affects the porosity of the copolymer particles. Mercury porosimetry reveals a significant change in the average pore size (up to 6.1-fold), the specific surface area (up to 3.2-f...
متن کاملInvestigation of Enzyme Immobilization Effects on its Characteristics
Background; Enzymes are well known as sensitive catalysts in the laboratory and industrial scale. To improve their properties and for using their significant potential in various reactions as a useful catalyst the stability of enzymes can often require improvement. Enzymes Immobilization on solid supports such as epoxy- functionalized ferric silica nanocomposite can be effective way to improve ...
متن کاملStabilization of Candida antarctica Lipase B (CALB) Immobilized on Octyl Agarose by Treatment with Polyethyleneimine (PEI).
Lipase B from Candida antarctica (CALB) was immobilized on octyl agarose (OC) and physically modified with polyethyleneimine (PEI) in order to confer a strong ion exchange character to the enzyme and thus enable the immobilization of other enzymes on its surface. The enzyme activity was fully maintained during the coating and the thermal stability was marginally improved. The enzyme release fro...
متن کاملLipase B from Candida antarctica Immobilized on a Silica-Lignin Matrix as a Stable and Reusable Biocatalytic System
A study was conducted of the possible use of a silica-lignin hybrid as a novel support for the immobilization of lipase B from Candida antarctica. Results obtained by elemental analysis, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM), as well as the determination of changes in porous structure parameters, confirmed the e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecules
دوره 21 6 شماره
صفحات -
تاریخ انتشار 2016